Yuichiro Hoshi
9 July, 2021
RIMS Workshop
"Combinatorial Anabelian Geometry and Related Topics"
F : a number field
\mathfrak{p} : a nonarchimedean prime of F
$F_{\mathfrak{p}}$: the completion of F at \mathfrak{p}
$\bar{F}_{\mathfrak{p}}$: an algebraic closure of $F_{\mathfrak{p}}$
$\bar{F}_{\mathfrak{p}}^{\wedge}$: the completion of $\bar{F}_{\mathfrak{p}}$
\bar{F} : the algebraic closure of F in $\bar{F}_{\mathfrak{p}}$
$G_{F} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{F} / F) \supseteq G_{\mathfrak{p}} \stackrel{\text { def }}{=} \operatorname{Gal}\left(\bar{F}_{\mathfrak{p}} / F_{\mathfrak{p}}\right)$
X_{F} : a hyperbolic curve/ F of type (g, r)
$X_{\square} \stackrel{\text { def }}{=} X_{F} \times{ }_{F}$

Definition
$\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)$: the tempered fundamental group of $X_{\bar{F}_{\hat{p}}^{\wedge}}$, i.e.,

Note:
$1 \rightarrow \pi_{1}^{\text {top }}$ (the dual semi-gr. of the st. mod. of the sp'l fib.) $\rightarrow \quad \rightarrow \operatorname{Aut}_{X_{\bar{F}_{\hat{p}}^{\prime}}}(Y) \rightarrow 1$
Proposition 1
\exists a continuous homomorphism $\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{\mathrm{p}}}}\right) \rightarrow \pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)$ that
(1) factors as the composite

$$
\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right) \xrightarrow{\text { natural }} \pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{\rightharpoonup}}}\right)^{\wedge} \sim \pi_{1}^{\text {ett }}\left(X_{\bar{F}}\right)
$$

and
(2) determines an injective homomorphism

$$
\operatorname{Out}\left(\pi_{1}^{\operatorname{tp}}\left(X_{\overline{F_{\hat{p}}}}\right)\right) \longleftrightarrow \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right)
$$

André's Theorem

Suppose: $X_{\bar{F}}$ is of quasi-Belyi type, i.e., $X_{\bar{F}} \stackrel{\text { ヨfinite étale }}{\leftarrow} \exists Y \xrightarrow{\exists \text { dominant }} \mathbb{P}_{\bar{F}}^{1} \backslash\{0,1, \infty\}$
$\left(\Rightarrow r>0\right.$, i.e., X_{F} is not projective $\left./ F\right)$
Theorem (Belyǐ)
The two outer actions

$$
\rho_{F}^{\text {et }}: G_{F} \longrightarrow \operatorname{Out}\left(\pi_{1}^{\mathrm{et}}\left(X_{\bar{F}}\right)\right), \quad \rho_{\mathfrak{p}}^{\mathrm{tp}}: G_{\mathfrak{p}} \longrightarrow \operatorname{Out}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\overline{F_{\mathfrak{p}}}}\right)\right)
$$

are faithful.
\Rightarrow

Theorem (André)
The above square is cartesian.
That is to say, for $\gamma \in G_{F}$:
$\gamma \in G_{\mathfrak{p}} \Leftrightarrow$
the outer action of γ on $\pi_{1}^{\text {ét }}\left(X_{\bar{F}}\right)$ "preserves" the subgp $\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right) \stackrel{\operatorname{Prp} 1,(1)}{\subseteq} \pi_{1}^{\text {ett }}\left(X_{\bar{F}}\right)$.

Today, [CbTpIII]
X_{F} : arbitrary
Theorem (cf. [NodNon, Theorem C]; also Minamide's talk Tuesday)
The two outer actions

$$
\rho_{F}^{\text {et }}: G_{F} \longrightarrow \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right), \quad \rho_{\mathfrak{p}}^{\mathrm{tp}}: G_{\mathfrak{p}} \longrightarrow \operatorname{Out}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\left.\overline{F_{\mathfrak{p}}}\right)}\right)\right)
$$

are faithful.
\Rightarrow

Main Theorem [CbTpIII, Theorem B]
The above square is cartesian
after replacing $\operatorname{Out}\left(\pi_{1}^{\operatorname{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)\right)$ by the subgroup $\operatorname{Out}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)\right)^{\mathrm{M}}$.
That is to say, for $\gamma \in G_{F}$:
$\gamma \in G_{\mathfrak{p}} \Leftrightarrow$
the outer action of γ on $\pi_{1}^{\text {ét }}\left(X_{\bar{F}}\right)$ "preserves" the subgp $\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right) \stackrel{\operatorname{Prp} 1,(1)}{\subseteq} \pi_{1}^{\text {ét }}\left(X_{\bar{F}}\right)$, and, moreover, the resulting outer automorphism of $\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)$ is $\underline{\mathrm{M} \text {-admissible }}$.
$H \subseteq \pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\mathrm{p}}}\right):$ a characteristic open subgroup of finite index
$\Rightarrow H$ corresponds to a finite étale Galois covering $Y_{H} \rightarrow X_{\bar{F}_{\hat{p}}}$

- \mathcal{Y}_{H} : the stable model of Y_{H} over the valuation $\operatorname{ring} \mathcal{O}$ of $\bar{F}_{\mathfrak{p}}^{\wedge}$
- \mathbb{G}_{H} : the dual semi-graph of the special fiber of \mathcal{Y}_{H}
metric structure
- p : the residue characteristic of \mathfrak{p}
- v : the p-adic valuation on $\bar{F}_{\hat{p}}^{\wedge}$ normalized so that $v(p)=1$

Then:
$e \in \operatorname{Node}\left(\mathbb{G}_{H}\right) \Rightarrow \exists a_{e} \in \mathfrak{m}_{\mathcal{O}}$ s.t. the completion of \mathcal{Y}_{H} at e is $\cong \mathcal{O}[[s, t]] /\left(s t-a_{e}\right)$
Moreover, $v\left(a_{e}\right) \in \mathbb{R}$ does not depend on the choice of " \cong ".

- $e \in \operatorname{Node}\left(\mathbb{G}_{H}\right) \Rightarrow \mu_{H}(e) \stackrel{\text { def }}{=} v\left(a_{e}\right) \in \mathbb{R}$

Thus: we obtain a metrized semi-graph $\left(\mathbb{G}_{H}, \mu_{H}\right)$.
$\underline{\text { What is Out }(-)^{\mathrm{M}} \text { ? }}$ $H \subseteq \pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right):$ a characteristic open subgroup of finite index α : an automorphism of $\pi_{1}^{\operatorname{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)$

$$
\begin{aligned}
& H: \text { char. } \alpha \curvearrowright H=\pi_{1}^{\mathrm{tp}}\left(Y_{H}\right) \\
& \stackrel{\text { Semi, Crl } 3.11]}{\Rightarrow} \alpha \curvearrowright \mathbb{G}_{H}
\end{aligned}
$$

Definition
$\begin{aligned} \alpha & \in \operatorname{Aut}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{\rho}}}\right)\right): \underline{\mathrm{M} \text {-admissible }} \stackrel{\text { def }}{\Leftrightarrow} \\ & \alpha \curvearrowright \mathbb{G}_{H} \text { is compatible w/ the metric structure } \mu_{H} \text { on } \mathbb{G}_{H} \text { for } \forall H \text { as above }\end{aligned}$
$\operatorname{Aut}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{\mathrm{p}}}}\right)\right)^{\mathrm{M}}$: the subgroup of M-admissible automorphisms
$\operatorname{Out}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{\mathrm{R}}}}\right)\right)^{\mathrm{M}} \stackrel{\text { def }}{=} \operatorname{Aut}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{\mathrm{p}}}}\right)\right)^{\mathrm{M}} / \operatorname{Inn}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{\mathrm{p}}}}\right)\right)$:
the subgroup of M-admissible outer automorphisms

Today, [CbTpIII]
X_{F} : arbitrary
Theorem (cf. [NodNon, Theorem C]; also Minamide's talk Tuesday)
The two outer actions

$$
\rho_{F}^{\text {et }}: G_{F} \longrightarrow \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right), \quad \rho_{\mathfrak{p}}^{\mathrm{tp}}: G_{\mathfrak{p}} \longrightarrow \operatorname{Out}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\left.\overline{F_{\mathfrak{p}}}\right)}\right)\right)
$$

are faithful.
\Rightarrow

Main Theorem [CbTpIII, Theorem B]
The above square is cartesian
after replacing $\operatorname{Out}\left(\pi_{1}^{\operatorname{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)\right)$ by the subgroup $\operatorname{Out}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)\right)^{\mathrm{M}}$.
That is to say, for $\gamma \in G_{F}$:
$\gamma \in G_{\mathfrak{p}} \Leftrightarrow$
the outer action of γ on $\pi_{1}^{\text {ét }}\left(X_{\bar{F}}\right)$ "preserves" the subgp $\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right) \stackrel{\operatorname{Prp} 1,(1)}{\subseteq} \pi_{1}^{\text {ét }}\left(X_{\bar{F}}\right)$, and, moreover, the resulting outer automorphism of $\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)$ is $\underline{\mathrm{M} \text {-admissible }}$.
$n \geq 1$
$\left(X_{\bar{F}}\right)_{n}$: the n-th configuration space of $X_{\bar{F}}$
Recall: Out ${ }^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)\right)$: the subgroup of FC-admissible outer automorphisms

$$
\Rightarrow
$$

$$
\ldots \hookrightarrow \operatorname{Out}^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n+1}\right)\right) \longleftrightarrow \operatorname{Out}^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)\right) \longleftrightarrow \ldots
$$

the injectivity portion of combinatorial cuspidalization
(cf. [NodNon, Theorem B]; also Minamide's talk Tuesday)
Definition
$\operatorname{Out}^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)\right)^{\mathrm{M}} \subseteq \operatorname{Out}^{\mathrm{FC}}\left(\tau_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)\right)$: the subgp def'd by the cartesian diagram

$$
T \subseteq \pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{3}\right): \text { a central tripod of } \pi_{1}^{\text {ett }}\left(\left(X_{\bar{F}}\right)_{3}\right) \text { (cf. my talk Wednesday) }
$$

Recall: $n \geq 3 \Rightarrow$

$$
\mathfrak{T}_{T}: \operatorname{Out}^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)\right) \longrightarrow \operatorname{Out}(T)
$$

the tripod homomorphism associated to the central tripod T
(cf. my talk Wednesday)
Main Lemma [CbTpIII, Theorem A]
The tripod hom. \mathfrak{T}_{T} maps an M-adm. outer autom. to an M-adm. outer autom., i.e.,

Main Lemma [CbTpIII, Theorem A]

Main Theorem [CbTpIII, Theorem B]

is cartesian

Proof of "André's Thm + Main Lmm \Rightarrow Main Thm"

$G_{\mathfrak{p}} \subseteq G_{F} \cap \operatorname{Out}^{\mathrm{FC}}\left(\pi_{1}^{\text {ét }}\left(\left(X_{\bar{F}}\right)_{3}\right)\right)^{\mathrm{M}} \quad$ in $\operatorname{Out}^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{3}\right)\right)$
$\stackrel{\mathfrak{T}_{7}}{\Rightarrow} \mathfrak{T}_{T}\left(G_{\mathfrak{p}}\right) \subseteq \mathfrak{T}_{T}\left(G_{F}\right) \cap \mathfrak{T}_{T}\left(\operatorname{Out}^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{3}\right)\right)^{\mathrm{M}}\right) \quad$ in $\operatorname{Out}(T)$
$\stackrel{\text { Main }}{\subseteq}{ }^{\text {Lmm }} \mathfrak{T}_{T}\left(G_{F}\right) \cap \operatorname{Out}(T)^{\mathrm{M}}$
$\subseteq \mathfrak{T}_{T}\left(G_{F}\right) \cap \operatorname{Out}\left(T^{\mathrm{tp}}\right)$
$\stackrel{\text { André }}{=} \mathfrak{T}_{T}\left(G_{\mathfrak{p}}\right)$
Thus, since $\left.\mathfrak{T}_{T}\right|_{G_{F}}$ is injective by Bely $\breve{1}$, we conclude: $G_{\mathfrak{p}}=G_{F} \cap \operatorname{Out}{ }^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{3}\right)\right)^{\mathrm{M}}$, as desired

Main Lemma [CbTpIII, Theorem A]

Proof
Step 1: characterization of M-adm'y via outer Galois actions in one dim'l case
Step 2: characterization of M-adm'y via outer Galois actions in higher dim'l case Step 3: compatibility of M-adm'y w.r.t. \mathfrak{T}_{T}
$I_{\mathfrak{p}} \subseteq G_{\mathfrak{p}}:$ the inertia subgroup of $G_{\mathfrak{p}}$
Step 1 [CbTpIII, Theorem 3.9]
$\alpha \in \operatorname{Out}\left(\pi_{1}^{\text {ét }}\left(X_{\bar{F}}\right)\right)$
$\alpha: \underline{\mathrm{M}-a d m i s s i b l e} \Leftrightarrow \alpha$ satisfies the following condition:
$\forall H \subseteq \pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)$: a characteristic open subgroup
$Q_{H} \stackrel{\text { def }}{=} \pi_{1}^{\text {et }}\left(X_{\bar{F}}\right) / \operatorname{Ker}\left(H \rightarrow H^{\{l\}}\right) \quad\left(H^{\{l\}}\right.$: the maximal pro-l quotient of $\left.H\right)$
Note: $1 \rightarrow H^{\{l\}} \rightarrow Q_{H} \rightarrow \pi_{1}^{\text {et }}\left(X_{\bar{F}}\right) / H \rightarrow 1$
Then:
The image of $\alpha \in \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right)$ in $\operatorname{Out}\left(Q_{H}\right)$ normalizes an open subgroup of the image of $I_{\mathfrak{p}} \xrightarrow{\rho_{F}^{\text {et }}} \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right) \rightarrow \operatorname{Out}\left(Q_{H}\right)$.

Step 1 [CbTpIII, Theorem 3.9]
$\alpha \in \operatorname{Out}\left(\pi_{1}^{\text {ét }}\left(X_{\bar{F}}\right)\right)$
$\alpha: \underline{\mathrm{M}-a d m i s s i b l e} \Leftrightarrow \alpha$ satisfies the following condition:
$\forall H \subseteq \pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)$: a characteristic open subgroup
$Q_{H} \stackrel{\text { def }}{=} \pi_{1}^{\text {et }}\left(X_{\bar{F}}\right) / \operatorname{Ker}\left(H \rightarrow H^{\{l\}}\right) \quad\left(H^{\{l\}}\right.$: the maximal pro-l quotient of $\left.H\right)$
Note: $1 \rightarrow H^{\{l\}} \rightarrow Q_{H} \rightarrow \pi_{1}^{\text {et }}\left(X_{\bar{F}}\right) / H \rightarrow 1$
Then:
The image of $\alpha \in \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right)$ in $\operatorname{Out}\left(Q_{H}\right)$ normalizes an open subgroup of the image of $I_{\mathfrak{p}} \xrightarrow{\rho_{F}^{\text {et }}} \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right) \rightarrow \operatorname{Out}\left(Q_{H}\right)$.

Idea
M-adm. \Leftrightarrow (a) cont'd in $\operatorname{Out}\left(\pi_{1}^{\mathrm{tp}}\left(X_{\bar{F}_{\hat{p}}}\right)\right)$ (b) compatible w/ the var. metric str.s μ_{H} 's $\Leftrightarrow\left(\mathrm{a}^{\prime}\right)$ compatible $\mathrm{w} /$ the var. semi-graph str.s \mathbb{G}_{H} 's
(b) compatible $\mathrm{w} /$ the var. metric str.s μ_{H} 's

where $\mathcal{G}_{H}^{\{l\}}$: the semi-graph of anab.s of pro-\{l\} PSC-type det'd by the sp'l fib. of \mathcal{Y}_{H}
Observe: $\quad \exists J_{H} \subseteq I_{\mathfrak{p}}$: an open subgp s.t.
$\left(\mathrm{A}^{\prime}\right)$ the composite $J_{H} \hookrightarrow I_{\mathfrak{p}} \stackrel{\rho_{E}^{6 \mathrm{t}}}{\longrightarrow} \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right) \rightarrow \operatorname{Out}\left(Q_{H}\right)$ is
an "almost pro- l version" of an outer action of PIPSC-type
(B) (by comparison b/w comb. cycl. synch. and sch.-th. cycl. synch. - cf. [CbTpI, §5])
the composite $J_{H} \hookrightarrow I_{\mathfrak{p}} \stackrel{\rho_{H}^{\text {et }}}{\longrightarrow} \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)\right) \rightarrow \operatorname{Out}\left(Q_{H}\right)$ "factors through"
a hom. $J_{H} \rightarrow \operatorname{Dehn}\left(\mathcal{G}_{H}^{\{l\}}\right) \subseteq \operatorname{Aut}\left(\mathcal{G}_{H}^{\{l\}}\right) \subseteq \operatorname{Out}\left(H^{\{l\}} \xrightarrow{\sim} \Pi_{\mathcal{G}_{H}^{\{l\}}}\right)$ whose image is $\cong \mathbb{Z}_{l}$, and, moreover, every generator of the image $\left(\cong \mathbb{Z}_{l}\right)$ of J_{H} in $\operatorname{Dehn}\left(\mathcal{G}_{H}^{\{l\}}\right)$ is

$$
\in \mathbb{Q}_{>0} \cdot \mathbb{Z}_{l}^{\times} \cdot\left(\mu_{H}(e)\right)_{e \in \operatorname{Node}\left(\mathcal{G}_{H}^{\{\{ \}}\right)} \in \bigoplus_{e \in \operatorname{Node}\left(\mathcal{G}_{H}^{\{\{ \}}\right)} \Lambda_{\mathcal{G}_{H}^{\{l\}}} \stackrel{\text { str. thm. of } \operatorname{Dehn}}{=} \operatorname{Dehn}\left(\mathcal{G}_{H}^{\{l\}}\right)
$$

Step 1, by

- an "almost pro-l version" of combinatorial anabelian result of PIPSC-type (cf. [CbTpIII, Theorem 1.11])
- cyclotomic synchronization (cf. [CbTpI; §3, §5])

Step 1: characterization of M-adm'y via outer Galois actions in one dim'l case

- an "almost pro-l version" of combinatorial anabelian result of PIPSC-type (cf. [CbTpIII, Theorem 1.11])
- cyclotomic synchronization (cf. [CbTpI; §3, §5])

Step 2: characterization of M-adm'y via outer Galois actions in higher dim'l case Step 3: compatibility of M-adm'y w.r.t. \mathfrak{T}_{T}

Step 2 [CbTpIII, Theorem 3.17, (ii)]
$\alpha \in \operatorname{Out}{ }^{\mathrm{FC}}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)\right)$
$\alpha: \underline{\mathrm{M}}$-admissible $\Leftrightarrow \alpha$ satisfies the following condition:
$\forall H \subseteq \pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)$: a characteristic open subgroup
$Q_{H} \stackrel{\text { def }}{=} \pi_{1}^{\text {ét }}\left(\left(X_{\bar{F}}\right)_{n}\right) / \operatorname{Ker}\left(H \rightarrow H^{\{l\}}\right) \quad\left(H^{\{l\}}\right.$: the maximal pro-l quotient of $\left.H\right)$
Then:
The image of $\alpha \in \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)\right)$ in $\operatorname{Out}\left(Q_{H}\right)$ normalizes an open subgroup of the image of $I_{\mathfrak{p}} \rightarrow \operatorname{Out}\left(\pi_{1}^{\text {et }}\left(\left(X_{\bar{F}}\right)_{n}\right)\right) \rightarrow \operatorname{Out}\left(Q_{H}\right)$.

Idea
M -adm. \Leftrightarrow the image in $\operatorname{Out}\left(\pi_{1}^{\mathrm{ett}}\left(X_{\bar{F}}\right)\right)$ is M-adm.

where J : the image of H in $\pi_{1}^{\text {et }}\left(X_{\bar{F}}\right)$
$\stackrel{\text { Stp }}{\Leftrightarrow}{ }^{1}$ a certain normalizability in the various $\operatorname{Out}\left(Q_{J}\right)$'s
Thus, to verify Step 2, it suffices to verify a sort of injectivity of "Out $\left(Q_{H}\right) \rightarrow \operatorname{Out}\left(Q_{J}\right)$ "
Step 2, by

- an "almost pro-l version" of the injectivity portion of combinatorial cuspidalization (cf. [CbTpIII, Corollary 2.20])

Step 1: characterization of M-adm'y via outer Galois actions in one dim'l case

- an "almost pro-l version" of combinatorial anabelian result of PIPSC-type (cf. [CbTpIII, Theorem 1.11])
- cyclotomic synchronization (cf. [CbTpI; $\S 3, \S 5])$

Step 2: characterization of M-adm'y via outer Galois actions in higher dim'l case - an "almost pro-l version" of the injectivity port. of combinatorial cuspidalization (cf. [CbTpIII, Corollary 2.20])
$\underline{\text { Step 3: compatibility of M-adm'y w.r.t. } \mathfrak{T}_{T}}$

M-adm. $\stackrel{\text { Stp }}{\Leftrightarrow}{ }^{2}$ a cert. normalizability in the outer autom. gps of var. almost pro-l quotients
Thus, to verify compatibility of M-adm'y w.r.t. \mathfrak{T}_{T},
one has to discuss a sort of compatibility b/w
the notion of tripod homomorphisms and various almost pro-l quotients,

e.g., one has to consider the normalizer $N_{Q_{H}}\left(T^{*}\right)$ of T^{*} in Q_{H} (cf. the definition of tripod homomorphisms).

References

[Semi] Semi-graphs of Anabelioids
[NodNon] On the Combinatorial Anabelian Geometry of Nodally Nondegenerate Outer Representations
[CbTpI] Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves I: Inertia groups and profinite Dehn twists
[CbTpIII] Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves III: Tripods and Tempered Fundamental Groups
scratch paper
scratch paper

